HW02 - Colligative Properties and Solubility Equilibria

▲ This is a preview of the draft version of the quiz

Started: Jan 23 at 6:54am

Quiz Instructions

Homework 02

Colligative Properties and Solubility Equilibria

Question 1	1 pt
Some distilled water is added to an empty beaker. A gram of copper (II) nitrate is added to the be vater is being stirred. After a few minutes, what is in the beaker?	aker and while the
◯ solid copper, nitrate ions, and water	
 nitrogen gas, copper atoms, electrons, and water 	
O copper ions, nitrate ions, and water	
Solid copper (II) nitrate and water	

Question 2	1 pts
In which of the following pairs do both compounds have a van't Hoff factor (i) of 2?	
O glucose and sodium chloride	
◯ sodium chloride and magnesium sulfate	
O perchloric acid and barium hydroxide	
◯ sodium sulfate and potassium chloride	

For solutions of a non-electrolyte, the van't Hoff factor is:

Question 4	1 pts
How many moles of ions are contained in 1.27 L of a 1.75 M solution of Mg(NO ₃) ₂ ?	
O 0.741 mol	
O 6.67 mol	
O 2.22 mol	
O 4.45 mol	

Question 5 1 pts	\$
Theoretically, it should be harder to dissolve (NaCl / Al_2S_3) in water because the (higher / lower) the charge density of a substance, the lower its solubility.	f
◯ Al ₂ S ₃ , lower	
O NaCl, higher	
O NaCl, lower	
O Al ₂ S ₃ , higher	

Question 6	1 pts

The freezing point of seawater is about -1.85°C. If seawater is an aqueous solution of sodium chloride, calculate the

molality of seawater. The k_{f} for water is 1.86 K/m.

 0.497 m -0.497 m 0.995 m 1.99 m 				
 -0.497 m 0.995 m 1.99 m 	🔘 0.497 m			
○ 0.995 m	🔘 -0.497 m			
O 1.99 m	🔘 0.995 m			
	🔘 1.99 m			

Question 7	1 pts
What will be the freezing point of a solution of 8 moles of sodium dichromate (Na ₂ Cr ₂ O ₇) dissolved in 16 Use the following values:	kg of water?
K _b = 0.512 K/m	
K _f = 1.86 K/m	
🔘 272.2 К	
○ 2.8°C	
🔘 275.8 К	
🔘 270.2 К	

Question 8	1 pts
Calculate the vapor pressure at 20°C of a solution containing 0.61g of naphthalene in 16g of chloroform (CHCl ₃) Naphthalene ($C_{10}H_8$) has a low vapor pressure and may be assumed to be nonvolatile. The vapor pressure of chloroform at 20°C is 156 torr.	ι.
O 20.90 torr	
O 28.10 torr	
O The vapor pressure would not change as naphthalene is considered non-volatile.	
O 150.65 torr	

Question 9

Rank the following aqueous solutions from lowest to highest boiling point: 0.5 m NaCl, 1 m KCl, 0.5 m BaCl₂, and 1 m $Ba(NO_3)_2$. All salt are dissolved in water.

 \bigcirc 1 m Ba(NO₃)₂ < 0.5 m NaCl < 0.5 m BaCl₂ < 1 m KCl

○ 1 m KCl < 1 m Ba(NO₃)₂ < 0.5 m NaCl < 0.5 m BaCl₂

 \bigcirc 0.5 m BaCl₂ < 1 m KCl < 1 m Ba(NO₃)₂ < 0.5 m NaCl

 \bigcirc 0.5 m NaCl < 0.5 m BaCl₂ < 1 m KCl < 1 m Ba(NO₃)₂

	. pto
A semi-permeable membrane can withstand an osmotic pressure of 0.75 atm. What molarity of aqueous matrix bromide solution would reach the limit for this membrane? (Assume RT = $25 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1}$)	agnesium
○ 0.03 M	
○ 0.01 mM	
○ 0.03 mM	
○ 0.01 M	

Question 11	1 pts
Catalase (a liver enzyme) dissolves in water. A 14mL solution containing 0.166g of catalase exhibits an osmotic pressure of 1.2 Torr at 20°C. What is the molar mass of catalase?	
○ 1.49x10 ⁵ g/mol	
○ 1.81x10 ⁵ g/mol	
○ 2.81x10 ⁵ g/mol	
○ 1.69x10 ⁵ g/mol	

1 pts

Question 12	1 pts
Two aqueous solutions are separated by a semi-permeable membrane:	
Solution A = 0.34 M KCl	
Solution B = 0.34 M MgCl ₂	
Which of the following statements is TRUE?	
◯ There is a net flow of CI ⁻ ions from solution B to solution A.	
\bigcirc There is no net flow of H ₂ O molecules from one solution to another.	
\bigcirc There is a net flow of H ₂ O molecules from solution A to solution B.	
\bigcirc There is a net flow of H ₂ O molecules from solution B to solution A.	

Question 13	1 pts
Red blood cells contain Na ⁺ ions, K ⁺ ions, and water. If we place some red blood cells into a be what will happen to them?	aker full of pure water,
O they will swell and burst	
O they will wiggle around rapidly	
O nothing	
O they will shrivel and collapse	

Question 14	1 pts
What is the net ionic equation for the reaction between aqueous solutions of Na ₃ PO ₄ and CuSO ₄ ?	
\bigcirc 2Na ⁺ + SO ₄ ²⁻ \longrightarrow Na ₂ SO ₄	
\bigcirc 3Cu ²⁺ + 2PO ₄ ³⁻ \longrightarrow Cu ₃ (PO ₄) ₂	
No reaction occurs since no precipitate is formed.	

 \bigcirc Cu²⁺ + PO₄³⁻ \longrightarrow CuPO₄

Question 15

What ions are present in solution after aqueous solutions of $Cu(NO_3)_2$ and K_2S are mixed? Assume we mixed stoichiometric equivalent amounts of both reactants and 100% reaction.

No ions are present as both products form precipitates.

O Cu²⁺, NO₃⁻, K⁺, S²⁻

O K⁺, NO₃[−]

O Cu²⁺, S²⁻

Question 16	1 pts
Aolar solubility is	
◯ the total molarity of the solution.	
\bigcirc equal to the K _{sp} .	
◯ the number of moles that dissolve to give one liter of super-saturated solution.	
\bigcirc the number of moles that dissolve to give one liter of saturated solution.	

Question 17	1 pts
The K _{sp} eqution for sodium bicarbonate (NaHCO ₃) should be written as:	
○ K _{sp} = [Na ⁺][HCO ₃ ⁻]	
\bigcirc K _{sp} = [Na ⁺][H ⁺][C ⁴⁺][O ²⁻] ³	
○ K _{sp} = [Na ⁺][H ⁺][CO ₃ ²⁻]	
0	

1 pts

Question 18	1 pts
Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true?	
○ K _{sp} = [Pb ²⁺][Cl ⁻]	
$\bigcirc K_{sp} = [Pb^{2+}]^2[Cl^-]$	
○ [Pb ²⁺] = [Cl ⁻]	
○ [Pb ²⁺] = 0.5[Cl ⁻]	

Question 19	1 pts
A hypothetical ionic substance T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of T_3U_2 is 4.04x10 ⁻²⁰ months the value of the solubility-product constant?	ol/L. What is
○ 9.79×10 ⁻³⁹	
○ 1.08×10 ⁻⁹⁷	
○ 1.63x10 ⁻³⁹	
○ 1.16 x 10 ⁻⁹⁵	

Question 20	1 pts
The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter?	
○ 5.3 x 10 ⁻⁴	
○ 2.8 x 10 ⁻⁷	
○ 1.4 x 10 ⁻⁷	
0	

Determine the molar solubility of some salt with the generic formula AB ₂ if $K_{\rm c} = 2.56 \times 10^2$	
Determine the motal solubility of some sait with the generic formula AB_2 in $R_{sp} = 2.000000$.	
○ 10 M	
O 0.1 M	
○ 4 M	
○ 1 M	

Question 22		1 pts
Rank the followi	ng salts from least to most molar solubility:	
Bil	$K_{sp} = 7.7 \times 10^{-19}$	
$Cd_3(AsO_4)_2$	$K_{sp} = 2.2 \times 10^{-33}$	
AIPO ₄	K _{sp} = 9.8x10 ⁻²¹	
CaSO ₄	K _{sp} = 4.9x10 ⁻⁵	
O AIPO ₄ < Bil	$< Cd_3(AsO_4)_2 < CaSO_4$	
◯ CaSO₄ < B	$I < AIPO_4 < Cd_3(AsO_4)_2$	
Cd ₃ (AsO ₄) ₂	< AIPO ₄ < Bil < CaSO ₄	
Cd ₃ (AsO ₄)	s = Bil < AlPO ₄ < CaSO ₄	

Question 23	1 pts
A hypothetical compound MX $_3$ has a molar solubility of 0.00562 M. What is the value of K _{sp} for MX $_3$?	
◯ 3.16 x 10 ⁻⁵	

◯ 9.48 x 10⁻⁵

◯ 2.69 x 10⁻⁸

Question 24	2 pts
Determine if a precipitate will form when 0.96g Na ₂ CO ₃ is combined with 0.2g BaBr ₂ in a 10L solution. (For BaCO = 2.8×10^{-9}).	₃ , K _{sp}
O BaCO ₃ precipitates	
O BaCO ₃ does not precipitate	
\bigcirc It is impossible to know if any BaCO ₃ will precipitate with the information given.	
O BaBr ₂ will remain in solid form as it is insoluble in water.	

Question 25	1 pts
CaSO ₄ has a K_{sp} = 3x10 ⁻⁵ . In which of the following would CaSO ₄ be the most soluble?	
1.0 M CaCl ₂ (aq)	
\bigcirc CaSO ₄ would have the same solubility in all three of these solutions	
○ 0.5 M K ₂ SO ₄ (aq)	
O pure water	

Question 26	2 pts
A solution of AgI contains 1.9 M Ag ⁺ . K_{sp} of AgI is 8.3 x 10 ⁻¹⁷ . What is the maximum I ⁻ concentration that can ex this solution?	ist in
◯ 1.6x10 ⁻¹⁶ M	

\bigcirc	1	.9	Μ
~		.0	

◯ 8.3x10⁻¹⁷ M

◯ 4.4x10⁻¹⁷ M

Question 27	2 pts
Vhat would be the molar solubility of Li_3PO_4 (K _{sp} = 2.37 x 10 ⁻⁴) in a 1M LiCl solution?	
◯ 2.37 x 10 ⁻⁴	
◯ 5.44 x 10 ⁻²	
◯ 1.24 x 10 ⁻¹	
◯ 1.54 x 10 ⁻²	

Quiz saved at 6:59am	Submit Quiz
-	